An Analysis of the Convergence of Graph Laplacians
نویسندگان
چکیده
Existing approaches to analyzing the asymptotics of graph Laplacians typically assume a well-behaved kernel function with smoothness assumptions. We remove the smoothness assumption and generalize the analysis of graph Laplacians to include previously unstudied graphs including kNN graphs. We also introduce a kernel-free framework to analyze graph constructions with shrinking neighborhoods in general and apply it to analyze locally linear embedding (LLE). We also describe how, for a given limit operator, desirable properties such as a convergent spectrum and sparseness can be achieved by choosing the appropriate graph construction.
منابع مشابه
A Combinatorial View of the Graph Laplacians
Discussions about different graph Laplacians, mainly normalized and unnormalized versions of the graph Laplacians, have been ardent with respect to various methods in clustering and graph based semi-supervised learning. Previous research on the graph Laplacians investigated their convergence properties to Laplacian operators on continuous manifolds. There is still no strong proof on convergence...
متن کاملA Combinatorial View of Graph Laplacians
Discussions about different graph Laplacians—mainly the normalized and unnormalized versions of graph Laplacian—have been ardent with respect to various methods of clustering and graph based semi-supervised learning. Previous research in the graph Laplacians, from a continuous perspective, investigated the convergence properties of the Laplacian operators on Riemannian Manifolds. In this paper,...
متن کاملBehavior of Graph Laplacians on Manifolds with Boundary
In manifold learning, algorithms based on graph Laplacians constructed from data have received considerable attention both in practical applications and theoretical analysis. In particular, the convergence of graph Laplacians obtained from sampled data to certain continuous operators has become an active research topic recently. Most of the existing work has been done under the assumption that ...
متن کاملGraph Convergence for H(.,.)-co-Accretive Mapping with over-Relaxed Proximal Point Method for Solving a Generalized Variational Inclusion Problem
In this paper, we use the concept of graph convergence of H(.,.)-co-accretive mapping introduced by [R. Ahmad, M. Akram, M. Dilshad, Graph convergence for the H(.,.)-co-accretive mapping with an application, Bull. Malays. Math. Sci. Soc., doi: 10.1007/s40840-014-0103-z, 2014$] and define an over-relaxed proximal point method to obtain the solution of a generalized variational inclusion problem ...
متن کاملLaplacians and the Cheeger inequality for directed graphs
We consider Laplacians for directed graphs and examine their eigenvalues. We introduce a notion of a circulation in a directed graph and its connection with the Rayleigh quotient. We then define a Cheeger constant and establish the Cheeger inequality for directed graphs. These relations can be used to deal with various problems that often arise in the study of non-reversible Markov chains inclu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010